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Abstract  

The paper provides a detailed study of the Adomian decomposition method (ADM) and the Picard 

method (PM) for solving ordinary differential equations (ODEs) related to electric circuits, 

specifically focusing on RC and RL circuits. It clearly establishes the existence and uniqueness of 

solution, while exploring how the series solutions converge and conducting a careful error analysis. 

This examination not only strengthens the theoretical understanding of these methods but also 

offers useful insights into their practical applications in electrical engineering and circuit analysis. 

Keywords: Adomian method; Picard method; existence; uniqueness; error analysis; RC circuits; 

RL circuits. 

1. Introduction 

Differential equations are essential in many areas of engineering and science, including 

electrical networks, fluid dynamics, control theory, fractal theory, electromagnetic theory, 

viscoelasticity, potential theory, chemistry, biology, and optical and neural network systems. 

This paper focuses on applying the Adomian decomposition method (ADM) and the Picard 

method (PM) to solve equations related to electric circuits, specifically RLC circuits. The study 

examines the convergence of the series solutions and conducts a thorough error analysis. 

Furthermore, it presents numerical examples and practical applications, including the series 
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RLC circuit equation and various specific cases derived from this circuit such as RC and RL 

circuits. 

 

2. RC Electrical Circuit 

 

The RC electrical circuit consists of a resistor (R) and a capacitor (C) connected in series with 

a voltage source (VS). This type of circuit is known for its oscillatory behavior, where the 

capacitor charges and discharges over time in response to the applied voltage.                            

 

Figure 2.1 

 

Where:  

  In the context of the RC circuit, the parameters are defined as follows: 

 Vs: the voltage source measured in volts, 

 R: the resistance measured in ohms, 

 C: the capacitance measured in Farad. 

These components are integral to the behavior of the circuit are used in the formulation of the 

differential equation (DE) that describes the dynamics of the RC series circuit: 

      From Kirchoff’s voltage law (KVL) we get,  

𝑉𝐶 + 𝑉𝑅  = 𝑉𝑆 

Where, 
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 𝑉𝑐(𝑡): 𝑡ℎ𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 

 𝑉𝑅(𝑡): 𝑡ℎ𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑐𝑟𝑜𝑠𝑠𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 

Then,                                                

𝑉𝑅   = 𝑖(𝑡)𝑅 

𝑉𝐶 =  
1

𝐶
 ∫  𝑖(𝑡)𝑑𝑡

𝑡

0
 

      Then we have, 

𝑅𝑖(𝑡)  +
1

𝐶
 ∫  𝑖(𝑡)𝑑𝑡

𝑡

0
 + 𝑣𝐶(0) = 𝑉𝑆 

       Therefore:  

𝑅𝑖(𝑡) = 𝑉𝑆  −  
1

𝐶
 ∫  𝑖(𝑡)𝑑𝑡

𝑡

0
 – 𝑣𝐶(0) 

        Then, 

                                                                               𝑖(𝑡) =
𝑉𝑆

𝑅
−

𝑣𝐶(0)

𝑅
−

1

𝑅𝐶
∫ 𝑖(𝜏)𝑑𝜏

𝑡

0
                                           (2.1( 

2.1  Methods of Solution   

2.1.2 Adomian decomposition method (ADM) 

i. Solution algorithm  

From equation (2.1), 

With initial condition: 

                                                     𝑖0(𝑡) =
𝑉𝑆

𝑅
−

𝑣𝐶(0)

𝑅
                                                        (2.2( 

Recursive relation: 

                                                           𝑖𝑛(𝑡) = −
1

𝑅𝐶
∫ 𝑖𝑛−1(𝜏)𝑑𝜏

𝑡

0
                                              (2.3) 

Finally, the ADM solution of (2.1) is  

                                                                    𝑖(𝑡) =  ∑ 𝑖𝑛(𝑡)∞
𝑛=0                                                   (2.4) 

 

ii. Convergence analysis of ADM: 

 Existence and uniqueness of the solution 
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Define the mapping 𝐹: 𝐸 → 𝐸 where 𝐸 is the Banach space, (𝐶[𝐼], ‖⋅‖) is the space of which 

consists of all continuous functions defined on the interval 𝐼  with the norm ‖𝑖(𝑡)‖ = 𝑚𝑎𝑥
𝑡∈𝐼

|𝑖(𝑡)| , 

∀ 0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑇. 

Theorem 2.1: 

The problem (2.1) has a unique solution whenever  0 < 𝛽 < 1  where, 𝛽 =
𝑇

𝐶𝑅
. 

Proof: 

The mapping 𝐹: 𝐸 → 𝐸 is defined as,  

𝐹𝑖(𝑡) =
𝑉𝑠 − 𝑣0

𝑅
−

1

𝐶𝑅
∫ 𝑖(𝜏)𝑑𝜏 

𝑡

0

 

Let: 𝑖(𝑡), 𝑧(𝑡) ∈ 𝐸 

‖𝐹𝑖 − 𝐹𝑧‖ = 𝑚𝑎𝑥
𝑡∈𝐼

| 
 𝑉𝑠 − 𝑣0

𝑅
−

1

𝐶𝑅
∫ 𝑖(𝜏)𝑑𝜏 −  

𝑉𝑠 − 𝑣0

𝑅

𝑡

0

+
1

𝐶𝑅
∫ 𝑧(𝜏)𝑑𝜏 

𝑡

0

 | 

                     = 𝑚𝑎𝑥
𝑡∈𝐼

| −
1

𝐶𝑅
∫ 𝑖(𝜏)𝑑𝜏

𝑡

0

+
1

𝐶𝑅
∫ 𝑧(𝜏)𝑑𝜏 

𝑡

0

 | 

                     ≤ 𝑚𝑎𝑥
𝑡∈𝐼

|−
1

𝐶𝑅
∫ [𝑖(𝜏) − 𝑧(𝜏)]𝑑𝜏 

𝑡

0

 | 

                     ≤
1

𝐶𝑅
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖(𝑡) − 𝑧(𝑡)| |∫ 1 𝑑𝜏 

𝑡

0

| 

                      ≤
1

𝐶𝑅
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖(𝑡) − 𝑧(𝑡)|𝑇 

                      ≤ [
1

𝐶𝑅
𝑇] ‖𝑖 − 𝑧‖ 

                      ≤
𝑇

𝐶𝑅
‖𝑖 − 𝑧‖ 

                      ≤ 𝛽‖𝑖 − 𝑧‖ 

Under the condition  0 < 𝛽 < 1, the mapping 𝐹 is a contraction, hence, there exists a unique 
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solution of the problem (2.1) and this completes the proof.   

 Proof of convergence 

Theorem 2.2: 

The series solution (2.4) of the problem (2.1) using ADM converges if  |𝑖1| < ∞ and 0 < 𝛽 < 1,   

𝛽 =
𝑇

𝐶𝑅
 .  

Proof:  

Define the sequence {𝑆𝑛} such that 𝑆𝑛 =   ∑ 𝑖𝑘(𝑡)𝑛
𝑘=0  is the sequence of partial sums from the series 

solution.  

Let  𝑆𝑛  and  𝑆𝑚  be two arbitrary partial sums with 𝑛 > 𝑚. Now, we are going to prove that  {𝑆𝑛}  

is a Cauchy sequence in this Banach space.  

 ‖𝑆𝑛 − 𝑆𝑚‖ = 𝑚𝑎𝑥
𝑡∈𝐼

|𝑆𝑛 − 𝑆𝑚| = 𝑚𝑎𝑥
𝑡∈𝐼

|∑ 𝑖𝑘(𝑡)𝑛
𝑘=𝑚+1 | 

 = 𝑚𝑎𝑥
𝑡∈𝐼

| ∑ ( −
1

𝐶𝑅
∫ 𝑖𝑘(𝜏)𝑑𝜏 ) 

𝑡

0

𝑛

𝑘=𝑚+1

| 

 = 𝑚𝑎𝑥
𝑡∈𝐼

|−
1

𝐶𝑅
∫ ∑ 𝑖𝑘

𝑛

𝑘=𝑚+1

(𝑡)𝑑𝜏
𝑡

0

| 

 = 𝑚𝑎𝑥
𝑡∈𝐼

|−
1

𝐶𝑅
∫ ∑ 𝑖𝑘

𝑛−1

𝑘=𝑚

(𝑡)𝑑𝜏
𝑡

0

| 

 = 𝑚𝑎𝑥
𝑡∈𝐼

|−
1

𝐶𝑅
∫ [𝑆𝑛−1 − 𝑆𝑚−1]𝑑𝜏

𝑡

0

| 

 ≤ 𝑚𝑎𝑥
𝑡∈𝐼

1

𝐶𝑅
∫ |𝑆𝑛−1 − 𝑆𝑚−1|𝑑𝜏

𝑡

0

 

 ≤
1

𝐶𝑅
𝑇 𝑚𝑎𝑥

𝑡∈𝐼

|𝑆𝑛−1 − 𝑆𝑚−1| 

 ≤ [
𝑇

𝐶𝑅
] ‖𝑆𝑛−1 − 𝑆𝑚−1‖ 

                                                  ≤ 𝛽‖𝑆𝑛−1 − 𝑆𝑚−1‖ 

Let  𝑛 = 𝑚 + 1  then, 

‖𝑆𝑚+1 − 𝑆𝑚‖ ≤ 𝛽‖𝑆𝑚 − 𝑆𝑚−1‖ ≤ 𝛽2‖𝑆𝑚−1 − 𝑆𝑚−2‖ ≤ ⋯ ≤ 𝛽𝑚‖𝑆1 − 𝑆0‖ 

From the triangle inequality we have,  

     ‖𝑆𝑛 − 𝑆𝑚‖ ≤ ‖𝑆𝑚+1 − 𝑆𝑚‖ + ‖𝑆𝑚+2 − 𝑆𝑚+1‖ + ⋯ + ‖𝑆𝑛 − 𝑆𝑛−1‖ 
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                        ≤ [𝛽𝑚 + 𝛽𝑚+1 + ⋯ + 𝛽𝑛−1]‖𝑆1 − 𝑆0‖ 

                        ≤ 𝛽𝑚[1 + 𝛽 + ⋯ + 𝛽𝑛−𝑚−1]‖𝑆1 − 𝑆0‖ 

                        ≤ 𝛽𝑚 [
1−𝛽𝑛−𝑚

1−𝛽
] ‖𝑖(𝑡)‖ 

Since 0 < 𝛽 < 1, and 𝑛 > 𝑚, then (1 − 𝛽𝑛−𝑚) ≤ 1. Consequently,  

                     ‖𝑆𝑛 − 𝑆𝑚‖ ≤
𝛽𝑚

1−𝛽
‖𝑖1(𝑡)‖  ≤

𝛽𝑚

1−𝛽
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖1(𝑡)|     

However, |𝑖1(𝑡)| < ∞ and as 𝑚 → ∞, ‖𝑆𝑛 − 𝑆𝑚‖ → 0 and hence, {𝑆𝑛} is a Cauchy sequence in 

this Banach space, so the series ∑ 𝑖𝑛(𝑡)∞
𝑛=0  converges, and this statement concludes the proof.   

 Error analysis 

For the Adomian decomposition method (ADM), we can assess the maximum absolute truncation 

error of the series solution as outlined in the subsequent theorem. 

 

Theorem 2.3: 

The maximum absolute truncation error of the series solution (2.4) to the problem (2.1) is 

estimated to be  

𝑚𝑎𝑥
𝑡∈𝐼

|𝑦(𝑡) − ∑ 𝑖𝑘(𝑡)

𝑚

𝑘=0

| ≤
𝛽𝑚

1 − 𝛽
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖1(𝑡)| 

 

Proof:  From theorem 2.2 we have,  

 ‖𝑆𝑛 − 𝑆𝑚‖ ≤
𝛽𝑚

1 − 𝛽
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖1(𝑡)| 

But,  𝑆𝑛 =   ∑ 𝑖𝑘
𝑛
𝑖=0 (𝑡)  as 𝑛 → ∞, then  𝑆𝑛 → 𝑖(𝑡), so  

‖𝑖(𝑡) − 𝑆𝑚‖ ≤
𝛽𝑚

1 − 𝛽
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖1(𝑡)| 

Therefore, the maximum absolute truncation error in the interval 𝐼 is 

                                 𝑚𝑎𝑥
𝑡∈𝐼

|𝑖(𝑡) − ∑ 𝑖𝑘
𝑚
𝑖=0 (𝑡)| ≤

𝛽𝑚

1−𝛽
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖1(𝑡)| 

In addition, this completes the proof. 

2.1.3 Picard Method (PM)  

i. Solution algorithm 

Applying PM to the IE (2.1), the solution is 
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                                                     𝑖0(𝑡) =  
𝑉𝑆

𝑅
−

𝑣𝐶(0)

𝑅
                                                         (2.5) 

                                               𝑖𝑛(𝑡) =  𝑖0(𝑡) −
1

𝑅𝐶
∫ 𝑖𝑛−1(𝜏)𝑑𝜏

𝑡

0
                                        (2.6)  

All the functions 𝑖𝑛(𝑡) are continuous functions, and 𝑖𝑛(𝑡) is the sum of successive differences. 

𝑖𝑛(𝑡) = 𝑖0(𝑡) + ∑ 𝑖𝑛(𝑡) − 𝑖𝑛−1(𝑡)

𝑛

𝑘=1

 

This means that the sequence 𝑖𝑛(𝑡) convergence is equivalent to the infinite series convergence. 

The final PM solution takes the form 

𝑖(𝑡) =  lim
𝑛→∞

𝑖𝑛(𝑡). 

ii. Convergence analysis 

We can deduce that if the series ∑ 𝑖𝑘(𝑡) − 𝑖𝑘−1(𝑡)𝑛
𝑘=1  is convergent, then the sequence {𝑖𝑛(𝑡)} 

will converge to 𝑖(𝑡).  

To prove that the sequence {𝑖𝑛(𝑡)} is convergent, consider the associated series, 

∑ 𝑖𝑘(𝑡) − 𝑖𝑘−1(𝑡)

∞

𝑘=0

 

For k=1, we get 

                                        𝑖1(𝑡) − 𝑖0(𝑡) = −
1

𝑅𝐶
∫ 𝑖0(𝜏)𝑑𝜏 

𝑡

0
                     

                                      |𝑖1(𝑡) − 𝑖0(𝑡)| = |−
1

𝑅𝐶
∫ 𝑖0(𝜏)𝑑𝜏 

𝑡

0
| 

                                                               ≤ |−
1

𝑅𝐶
∫ 𝑖0(𝜏)𝑑𝜏 

𝑡

0
| 

                                                               ≤ |𝑖0(𝑡)| [−
1

𝑅𝐶
∫ 1 𝑑𝜏 

𝑡

0
] 

                                                              ≤ |𝑖0(𝑡)| [
1

𝑅𝐶
𝑇] 

                                                               ≤ [
𝑇

𝑅𝐶
] 𝜂 ≤ 𝜑1 

Where |𝑖0(𝑡)| ≤ 𝜂 𝑎𝑛𝑑 𝜑1 = [
𝑇

𝑅𝐶
] 𝜂. 

Now, we will get an estimate for 𝑖𝑛(𝑡) − 𝑖𝑛−1(𝑡), 𝑛 ≥ 2 

𝑖𝑛(𝑡) − 𝑖𝑛−1(𝑡) = −
1

𝑅𝐶
∫ 𝑖𝑛−1(𝜏)𝑑𝜏 

𝑡

0
+

1

𝑅𝐶
∫ 𝑖𝑛−2(𝜏)𝑑𝜏 

𝑡

0
 

                          = |−
1

𝑅𝐶
∫ 𝑖𝑛−1(𝜏)𝑑𝜏 

𝑡

0
+

1

𝑅𝐶
∫ 𝑖𝑛−2(𝜏)𝑑𝜏 

𝑡

0
| 
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                          ≤ [
1

𝑅𝐶
∫ 1 𝑑𝜏 

𝑡

0
] |𝑖𝑛−1(𝑡) − 𝑖𝑛−2(𝑡)| 

                          ≤ [
1

𝑅𝐶
𝑇] |𝑖𝑛−1(𝑡) −  𝑖𝑛−2(𝑡)| 

                          ≤ 𝛽|𝑖𝑛−1(𝑡) − 𝑖𝑛−2(𝑡)| 

 

In the above equation, if we put n = 2 

                                                 |𝑖2(𝑡) − 𝑖1(𝑡)| ≤  [
𝑇

𝑅𝐶
] |𝑖1(𝑡) − 𝑖0(𝑡)| 

                                                 |𝑖2(𝑡) − 𝑖1(𝑡)| ≤  𝛽𝜑1 

Doing the same for n = 3, 4, … 

                                                 |𝑖3(𝑡) − 𝑖2(𝑡)| ≤  𝛽|𝑖2(𝑡) − 𝑖1(𝑡)| ≤ 𝛽2𝜑1, 

                                                 |𝑖4(𝑡) − 𝑖3(𝑡)| ≤  𝛽|𝑖3(𝑡) − 𝑖2(𝑡)| ≤ 𝛽3𝜑1, 

                                                                     ⋮ 

Then the general solution will be, 

                                            |𝑖𝑛(𝑡) − 𝑖𝑛−1(𝑡)| ≤  𝛽𝑛−1𝜑1 

Since 𝛽 < 1, so the sequence {𝑖𝑛(𝑡)}  will be convergent. 

𝑖(𝑡) =  lim
𝑛→∞

(−
1

𝑅𝐶
∫ 𝑖𝑛−1(𝜏)𝑑𝜏 

𝑡

0

) 

𝑖(𝑡) =  −
1

𝑅𝐶
∫ 𝑖(𝜏)𝑑𝜏 

𝑡

0

 

2.2   Numerical examples: 

In the circuit of figure (2.2) , 𝑉𝑆 = 1 𝑉 , 𝑅 = 1000 Ω , 𝐶 = 0.1 𝑚𝐹, 𝑣𝑐(0) = 1 𝑉. Compute and 

.is closed2 is open and S1 is open. (2) S2 is closed and S1 when : (1) S t > 0 sketch i(t) for 

 

Figure 2.2 
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 Solution: 

(1) When S1 is closed and S2 is open 

𝑖(𝑡) =
𝑉𝑆

𝑅
−

𝑣𝑐(0)

𝑅
−

1

𝑅𝐶
 ∫ 𝑖(𝜏)𝑑𝜏

𝑡

0

 

 

i. We can get the exact solution of (2.1) by applying Laplace transform. 

First, we get  

𝐼(𝑠) = (
𝑉𝑆

𝑅𝑆
) − ( 

𝑣𝐶(0)

𝑅𝑆
) − (

1

𝑅𝐶

𝐼(𝑠)

𝑆
) 

     Then we apply Laplace transform and get the exact solution 

𝑖(𝑡) = 0.001 𝑒−10𝑡 

ii. From (2.2) and (2.3) we get, 

                             𝑖0(𝑡) =  
1

1000
=  0.001,                                                  

                       𝑖𝑛(𝑡) =  −10 ∫ 𝑖𝑛−1(𝜏)𝑑𝜏
𝑡

0
,  𝑛 ≥ 1. 

  Hence,         𝑖(𝑡) =  ∑ 𝑖𝑛
𝑛=0

∞

(𝑡) 

iii. From (2.5) and (2.6) we get, 

𝑖0(𝑡) =  0.001, 

                           𝑖𝑛(𝑡) = 0.001 − 10 ∫ 𝑖𝑛−1(𝜏) 𝑑𝜏
𝑡

0
,  𝑛 ≥ 1.  

Hence,                                        𝑖(𝑡) = lim
𝑛→∞

𝑖𝑛(𝑡). 

Figures illustrate a comparison among the exact solution, the ADM, and the PM. These visuals 

demonstrate that as the number of terms n increases, the accuracy of the solution improves, 

ultimately converging to the exact solution. 

Notice: All calculations and graphical representations in the paper were performed using 

MATHEMATICA software for the examples presented. 
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Table 2.1 shows the absolute relative error (ARE) of ADM and PM solutions. The time comparison between 

them is given in Table 2.2. 

Table 2.1:  ARE of ADM and PM solutions 

𝒕 |
𝒊𝑨𝑫𝑴 − 𝒊𝑬𝒙𝒂𝒄𝒕

𝒊𝑬𝒙𝒂𝒄𝒕

| |
𝒊𝑷𝑴 − 𝒊𝒆𝒙𝒂𝒄𝒕

𝒊𝑬𝒙𝒂𝒄𝒕

| 

0.1 𝟏. 𝟗𝟓𝟐𝟓 × 𝟏𝟎−𝟏𝟔 𝟐. 𝟗𝟒𝟕𝟐 × 𝟏𝟎−𝟏𝟔 

0.2 𝟑. 𝟓𝟎𝟖𝟑 × 𝟏𝟎−𝟏𝟓 𝟏. 𝟔𝟎𝟐𝟑 × 𝟏𝟎−𝟏𝟓 

0.3 𝟏. 𝟑𝟓𝟑𝟏 × 𝟏𝟎−𝟏𝟒 𝟏. 𝟗𝟓𝟗𝟗 × 𝟏𝟎−𝟏𝟒 

0.4 𝟒. 𝟖𝟎𝟕𝟏 × 𝟏𝟎−𝟏𝟒 𝟏. 𝟒𝟐𝟎𝟕 × 𝟏𝟎−𝟏𝟑 

0.5 𝟐. 𝟎𝟑𝟐𝟕 × 𝟏𝟎−𝟏𝟒 𝟑. 𝟐𝟏𝟖𝟐 × 𝟏𝟎−𝟏𝟑 

0.6 𝟐. 𝟎𝟓𝟔𝟒 × 𝟏𝟎−𝟏𝟐 𝟏. 𝟔𝟔𝟐𝟏 × 𝟏𝟎−𝟏𝟐 

0.7 𝟏. 𝟓𝟏𝟖𝟗 × 𝟏𝟎−𝟏𝟏 𝟐. 𝟔𝟏𝟓𝟕 × 𝟏𝟎−𝟏𝟏 

0.8 𝟓. 𝟔𝟏𝟓𝟗 × 𝟏𝟎−𝟏𝟎 𝟏. 𝟑𝟕𝟐𝟗𝟒 × 𝟏𝟎−𝟗 

0.9 𝟐. 𝟔𝟔𝟓𝟐𝟒 × 𝟏𝟎−𝟕 𝟐. 𝟔𝟕𝟕𝟑𝟏 × 𝟏𝟎−𝟕 

1 0.0000531353 0.0000531437 

Figure 2.4: ADM and LTM Solutions 

Figure 2.4: PM and LTM Solutions 
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From Table 2.2, we can see that the two methods are close to each other, but PM gives solution 

that is more accurate. 

Table 2.2: time comparison 

ADM time PM time 

0.5 2.141 

 

(2) S1 is open and S2 is closed ( 𝑣𝑆 = 0 ) 

𝑖(𝑡) = −
𝑣𝑐(0)

𝑅
−

1

𝑅𝐶
 ∫ 𝑖(𝜏)𝑑𝜏

𝑡

0

 

i. We can get the exact solution of (2.1) by applying Laplace transform. 

First, we get  

                              𝐼(𝑠) = − ( 
𝑣𝐶(0)

𝑅𝑆
) − (

1

𝑅𝐶

𝐼(𝑠)

𝑆
) 

      Then we apply Laplace transform and get the exact solution 

                                    𝑖(𝑡) = −0.001 𝑒−10𝑡  

ii. From (2.2) and (2.3) we get, 

                                          𝑖0(𝑡) =  
−1

1000
= −0.001,                                                  

                                 𝑖𝑛(𝑡) =  −10 ∫ 𝑖𝑛−1(𝜏)𝑑𝜏
𝑡

0
,  𝑛 ≥ 1.  

             Hence,                         𝑖(𝑡) =  ∑ 𝑖𝑛
𝑛=0

∞

(𝑡)  

iii. From (5) and (6) we get, 

𝑖0(𝑡) = −0.001, 

                                      𝑖𝑛(𝑡) = − 0.001 − 10 ∫ 𝑖𝑛−1(𝜏) 𝑑𝜏
𝑡

0
,  𝑛 ≥ 1.  

Hence, 

𝑖(𝑡) = lim
𝑛→∞

𝑖𝑛(𝑡). 
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Figure 2.5: ADM and LTM Solutions 

 

Figure 2.6: PM and LTM Solutions 

Table 2.3 shows the absolute relative error (ARE) of ADM and PM solutions. The time comparison between 

them is given in Table 2.4. 

Table 2.3:  ARE of ADM and PM solutions 

𝒕 |
𝒊𝑨𝑫𝑴 − 𝒊𝑬𝒙𝒂𝒄𝒕

𝒊𝑬𝒙𝒂𝒄𝒕
| |

𝒊𝑷𝑴 − 𝒊𝒆𝒙𝒂𝒄𝒕

𝒊𝑬𝒙𝒂𝒄𝒕
| 

0.1 𝟏. 𝟗𝟓𝟐𝟓 × 𝟏𝟎−𝟏𝟔 𝟐. 𝟗𝟒𝟕𝟐 × 𝟏𝟎−𝟏𝟔 

0.2 𝟑. 𝟓𝟎𝟖𝟑 × 𝟏𝟎−𝟏𝟓 𝟏. 𝟔𝟎𝟐𝟑 × 𝟏𝟎−𝟏𝟓 

0.3 𝟏. 𝟑𝟓𝟑𝟏 × 𝟏𝟎−𝟏𝟒 𝟏. 𝟗𝟓𝟗𝟗 × 𝟏𝟎−𝟏𝟒 

0.4 𝟒. 𝟖𝟎𝟕𝟏 × 𝟏𝟎−𝟏𝟒 𝟏. 𝟒𝟐𝟎𝟕 × 𝟏𝟎−𝟏𝟑 

0.5 𝟐. 𝟎𝟑𝟐𝟕 × 𝟏𝟎−𝟏𝟒 𝟑. 𝟐𝟏𝟖𝟐 × 𝟏𝟎−𝟏𝟑 

0.6 𝟐. 𝟎𝟓𝟔𝟒 × 𝟏𝟎−𝟏𝟐 𝟏. 𝟔𝟔𝟐𝟏 × 𝟏𝟎−𝟏𝟐 

0.7 𝟏. 𝟓𝟏𝟖𝟗 × 𝟏𝟎−𝟏𝟏 𝟐. 𝟔𝟏𝟓𝟕 × 𝟏𝟎−𝟏𝟏 

0.8 𝟓. 𝟔𝟏𝟓𝟗 × 𝟏𝟎−𝟏𝟎 𝟏. 𝟑𝟕𝟐𝟗𝟒 × 𝟏𝟎−𝟗 

0.9 𝟐. 𝟔𝟔𝟓𝟐𝟒 × 𝟏𝟎−𝟕 𝟐. 𝟔𝟕𝟕𝟑𝟏 × 𝟏𝟎−𝟕 

1 0.0000531353 0.0000531437 
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From Table 2.4, we can see that the two methods are close to each other, but PM gives solution 

that is more accurate. 

Table 2.4: time comparison 

ADM time PM time 

0.204 1.829 

 

From table 2.3 and table 2.4, the results indicate that ADM is generally faster than PM, making it 

a more efficient choice for solving these types of equations. 

3. RL Electrical Circuit 

The oscillating electrical circuit consists of a voltage source Vs connected to a resistor R and an 

inductor L. While these components can be arranged in various configurations, this analysis 

focuses specifically on the series RL circuit. It is important to note that all these components are 

positive elements    

Figure 3.1 

Where: 

In the context of the RL circuit, the parameters are defined as follows: 

 Vs: the voltage source measured in volts, 

 R: the resistance measured in ohms, 

 L: the inductance measured in Henry. 

These components are integral to the behavior of the circuit and are used in the formulation of the 

differential equation (DE) that describes the dynamics of the RL series circuit: 

 𝑅𝑖(𝑡) + 𝑣𝐿(𝑡) = 𝑉𝑠(𝑡) 
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Where, 

𝑣𝐿(𝑡): 𝑡ℎ𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 

𝑅𝑖(𝑡): 𝑡ℎ𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑐𝑟𝑜𝑠𝑠𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 

𝑆𝑖𝑛𝑐𝑒 𝑣𝐿(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
 , 𝑡ℎ𝑒𝑛 

                                                               𝑅𝑖(𝑡) + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
= 𝑉𝑠(𝑡)                                                            (3.1) 

           𝑖(0) = 𝐼0                                                                      

3.1  Methods of Solution   

3.1.1 Adomian decomposition method 

i. Solution algorithm 

                     From (3.1) 

                                                     𝐿
𝑑𝑖(𝑡)

𝑑𝑡
= 𝑣𝑠(𝑡) − 𝑅𝑖(𝑡)                                                      (3.2) 

                     By integrating both sides of equation (3.2), we have 

                                  𝑖(𝑡) = 𝐼0 +
1

𝐿
∫ 𝑣𝑠(𝜏)𝑑𝜏 

𝑡

0
−

𝑅

𝐿
∫ 𝑖(𝜏)𝑑𝜏

𝑡

0
                                                 (3.3) 

 

                     Decomposing  𝑖(𝑡) = ∑ 𝑖𝑛(𝑡)∞
𝑛=0   and substitute in equation (3.3), we get the  

                     following recursive relations that represent the ADM algorithm: 

                                               𝑖0(𝑡) =  𝐼0 +
1

𝐿
∫ 𝑣𝑠(𝜏)𝑑𝜏

𝑡

0
,                                                  (3.4) 

                                               𝑖𝑛(𝑡) =  −
𝑅

𝐿
∫  𝑖𝑛−1(𝜏)𝑑𝜏

𝑡

0
                                                (3.5) 

 

 

                     Finally, the ADM solution of (3.1) is  

 

                                                                 𝑖(𝑡) =  ∑ 𝑖𝑛(𝑡)

∞

𝑛=0

.                                                                     (3.6) 
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ii. Convergence analysis 

 Existence and uniqueness of the solution 

Define the mapping 𝐹: 𝐸 → 𝐸 where 𝐸 is the Banach space, (𝐶[𝐼], ‖⋅‖) is the space of which 

consists of all continuous functions defined on the interval 𝐼  with the norm ‖𝑖(𝑡)‖ = 𝑚𝑎𝑥
𝑡∈𝐼

|𝑖(𝑡)| , 

∀ 0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑇. 

Theorem 1: 

The problem (1) has a unique solution whenever,  0 < 𝛽 < 1  where  𝛽 =
𝑅

𝐿
𝑇. 

Proof: 

The mapping 𝐹: 𝐸 → 𝐸 is defined as,  

𝐹𝑖(𝑡) = 𝐼0 +
1

𝐿
∫ 𝑣𝑠(𝜏)𝑑𝜏 

𝑡

0

−
𝑅

𝐿
∫ 𝑖(𝜏)𝑑𝜏

𝑡

0

 

Let: 𝑖(𝑡), 𝑧(𝑡) ∈ 𝐸  

‖𝐹𝑖 − 𝐹𝑧‖ = 𝑚𝑎𝑥
𝑡∈𝐼

|−
𝑅

𝐿
∫ 𝑖(𝜏)𝑑𝜏 

𝑡

0

+
𝑅

𝐿
∫ 𝑧(𝜏)𝑑𝜏 

𝑡

0

 | 

                     = 𝑚𝑎𝑥
𝑡∈𝐼

|
𝑅

𝐿
∫ [𝑖(𝜏) − 𝑧(𝜏)]𝑑𝜏 

𝑡

0

 | 

                    =
𝑅

𝐿
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖(𝑡) − 𝑧(𝑡)| |∫ 𝑑𝜏 

𝑡

0

| 

                      ≤
𝑅

𝐿
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖(𝑡) − 𝑧(𝑡)|𝑇 

                      ≤
𝑅

𝐿
𝑇‖𝑖 − 𝑧‖ 

                      ≤ 𝛽‖𝑖 − 𝑧‖ 

Under the condition  0 < 𝛽 < 1, the mapping 𝐹 is a contraction, hence, there exists a unique 

solution of the problem (3.1) and this completes the proof.   

 Proof of convergence 

Theorem 3.2: 
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The series solution (3.6) of the problem (3.1) using ADM converges if  |𝑖1| < ∞ and 0 < 𝛽 < 1, 

  𝛽 =
𝑅

𝐿
𝑇.  

Proof:  

Define the sequence {𝑆𝑛} such that 𝑆𝑛 = ∑ 𝑖𝑘(𝑡)𝑛
𝑘=0  is the sequence of partial sums from the series 

solution.  

Let  𝑆𝑛  and  𝑆𝑚  be two arbitrary partial sums with  𝑛 > 𝑚. Now, we are going to prove that  {𝑆𝑛}  

is a Cauchy sequence in this Banach space.  

   ‖𝑆𝑛 − 𝑆𝑚‖ = 𝑚𝑎𝑥
𝑡∈𝐼

|𝑆𝑛 − 𝑆𝑚| = 𝑚𝑎𝑥
𝑡∈𝐼

|∑ 𝑖𝑘(𝑡)𝑛
𝑘=𝑚+1 | 

 = 𝑚𝑎𝑥
𝑡∈𝐼

| ∑
𝑅

𝐿
∫ 𝑖𝑘(𝜏)𝑑𝜏 

𝑡

0

𝑛

𝑘=𝑚+1

| 

 = 𝑚𝑎𝑥
𝑡∈𝐼

|
𝑅

𝐿
∫ ∑ 𝑖𝑘

𝑛

𝑘=𝑚+1

(𝑡)𝑑𝜏
𝑡

0

| 

 = 𝑚𝑎𝑥
𝑡∈𝐼

|
𝑅

𝐿
∫ ∑ 𝑖𝑘

𝑛−1

𝑘=𝑚

(𝑡)𝑑𝜏
𝑡

0

| 

 = 𝑚𝑎𝑥
𝑡∈𝐼

|
𝑅

𝐿
∫ [𝑆𝑛−1 − 𝑆𝑚−1]𝑑𝜏

𝑡

0

| 

 ≤
𝑅

𝐿
𝑇 𝑚𝑎𝑥

𝑡∈𝐼

|𝑆𝑛−1 − 𝑆𝑚−1| 

                                                            ≤
𝑅

𝐿
𝑇‖𝑆𝑛−1 − 𝑆𝑚−1‖ 

                                                     ≤ 𝛽‖𝑆𝑛−1 − 𝑆𝑚−1‖ 

Let  𝑛 = 𝑚 + 1  then, 

‖𝑆𝑚+1 − 𝑆𝑚‖ ≤ 𝛽‖𝑆𝑚 − 𝑆𝑚−1‖ ≤ 𝛽2‖𝑆𝑚−1 − 𝑆𝑚−2‖ ≤ ⋯ ≤ 𝛽𝑚‖𝑆1 − 𝑆0‖ 

from the triangle inequality we have,  

     ‖𝑆𝑛 − 𝑆𝑚‖ ≤ ‖𝑆𝑚+1 − 𝑆𝑚‖ + ‖𝑆𝑚+2 − 𝑆𝑚+1‖ + ⋯ + ‖𝑆𝑛 − 𝑆𝑛−1‖ 

                        ≤ [𝛽𝑚 + 𝛽𝑚+1 + ⋯ + 𝛽𝑛−1]‖𝑆1 − 𝑆0‖ 

                        ≤ 𝛽𝑚[1 + 𝛽 + ⋯ + 𝛽𝑛−𝑚−1]‖𝑆1 − 𝑆0‖ 

                        ≤ 𝛽𝑚 [
1−𝛽𝑛−𝑚

1−𝛽
] ‖𝑖(𝑡)‖ 

Since 0 < 𝛽 < 1, and 𝑛 > 𝑚, then (1 − 𝛽𝑛−𝑚) ≤ 1. Consequently,  

      ‖𝑆𝑛 − 𝑆𝑚‖ ≤
𝛽𝑚

1−𝛽
‖𝑖1(𝑡)‖ 



29 
 

                         ≤
𝛽𝑚

1−𝛽
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖1(𝑡)|     

but |𝑖1(𝑡)| < ∞ and as 𝑚 → ∞, ‖𝑆𝑛 − 𝑆𝑚‖ → 0 and hence, {𝑆𝑛} is a Cauchy sequence in this 

Banach space, so the series ∑ 𝑖𝑛(𝑡)∞
𝑛=0  converges, and This statement concludes the proof.   

 Error analysis 

For the ADM, we can assess the maximum absolute truncation error of the series solution as 

outlined in the subsequent theorem 

 

Theorem 3.3: 

The maximum absolute truncation error of the series solution (3.6) to the problem (3.1) is 

estimated to be  

𝑚𝑎𝑥
𝑡∈𝐼

|𝑦(𝑡) − ∑ 𝑖𝑘(𝑡)𝑚
𝑘=0 | ≤

𝛽𝑚

1−𝛽
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖1(𝑡)|. 

 

Proof:  From theorem 3.2 we have,  

 ‖𝑆𝑛 − 𝑆𝑚‖ ≤
𝛽𝑚

1 − 𝛽
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖1(𝑡)| 

But,  𝑆𝑛 =   ∑ 𝑖𝑘
𝑛
𝑖=0 (𝑡)  as 𝑛 → ∞, then  𝑆𝑛 → 𝑖(𝑡), so  

‖𝑖(𝑡) − 𝑆𝑚‖ ≤
𝛽𝑚

1 − 𝛽
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖1(𝑡)| 

Therefore, the maximum absolute truncation error in the interval 𝐼 is 

                                 𝑚𝑎𝑥
𝑡∈𝐼

|𝑖(𝑡) − ∑ 𝑖𝑘
𝑚
𝑖=0 (𝑡)| ≤

𝛽𝑚

1−𝛽
𝑚𝑎𝑥

𝑡∈𝐼
|𝑖1(𝑡)| 

Moreover, this completes the proof. 

3.1.2 Successive approximation method (PM) 

i. Solution algorithm 

Applying PM to IE (3.3), the solution is 

                                                    𝑖0(𝑡) = 𝐼0 +
1

𝐿
∫ 𝑣𝑠(𝑡)𝑑𝜏 

𝑡

0
                                                                  (3.7) 

                                                   𝑖𝑛(𝑡) = 𝑖0(𝑡) −
𝑅

𝐿
∫ 𝑖(𝜏)𝑑𝜏 

𝑡

0
.                                                        (3.8) 

All the functions 𝑖𝑛(𝑡) are continuous functions, and 𝑖𝑛(𝑡) is the sum of successive differences. 
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𝑖𝑛(𝑡) = 𝑖0(𝑡) + ∑ 𝑖𝑛(𝑡) − 𝑖𝑛−1(𝑡)

𝑛

𝑘=1

 

This means that the sequence 𝑖𝑛(𝑡) convergence is equivalent to the infinite series convergence. 

The final PM solution takes the form 

𝑖(𝑡) =  lim
𝑛→∞

𝑖𝑛(𝑡). 

ii. Convergence analysis 

We can deduce that if the series ∑ 𝑖𝑘(𝑡) − 𝑖𝑘−1(𝑡)𝑛
𝑘=1  is convergent, then the sequence {𝑖𝑛(𝑡)} 

will converge to 𝑖(𝑡).  

To prove that the sequence {𝑖𝑛(𝑡)} is convergent, consider the associated series, 

∑ 𝑖𝑘(𝑡) − 𝑖𝑘−1(𝑡)

∞

𝑘=0

 

For k=1, we get 

                                        𝑖1(𝑡) − 𝑖0(𝑡) = −
𝑅

𝐿
∫ 𝑖0(𝜏)𝑑𝜏 

𝑡

0
 

                                      |𝑖1(𝑡) − 𝑖0(𝑡)| = |−
𝑅

𝐿
∫ 𝑖0(𝜏)𝑑𝜏 

𝑡

0
| 

                                                               ≤ |𝑖0(𝑡)| [
𝑅

𝐿
𝑇] 

                                                               ≤
𝑅

𝐿
𝑇𝜂 ≤ 𝜑1 

Where |𝑖0(𝑡)| ≤ 𝜂 𝑎𝑛𝑑 𝜑1 =
𝑅

𝐿
𝑇𝜂. 

Now, we will get an estimate for 𝑖𝑛(𝑡) − 𝑖𝑛−1(𝑡), 𝑛 ≥ 2 

𝑖𝑛(𝑡) − 𝑖𝑛−1(𝑡) = −
𝑅

𝐿
∫ 𝑖𝑛−1(𝜏)𝑑𝜏 

𝑡

0

+
𝑅

𝐿
∫ 𝑖𝑛−2(𝜏)𝑑𝜏 

𝑡

0

 

                               |𝑖𝑛(𝑡) − 𝑖𝑛−1(𝑡)| = |−
𝑅

𝐿
∫ 𝑖𝑛−1(𝜏)𝑑𝜏 

𝑡

0
+

𝑅

𝐿
∫ 𝑖𝑛−2(𝜏)𝑑𝜏 

𝑡

0
| 

                                                            ≤ [
𝑅

𝐿
∫ 𝑑𝜏 

𝑡

0
] |𝑖𝑛−1(𝑡) − 𝑖𝑛−2(𝑡)| 

                                                            ≤ [
𝑅

𝐿
𝑇] |𝑖𝑛−1(𝑡) −  𝑖𝑛−2(𝑡)| 

                                                            ≤ 𝛽|𝑖𝑛−1(𝑡) − 𝑖𝑛−2(𝑡)| 

In the above equation, if we put n=2 

                                                 |𝑖2(𝑡) − 𝑖1(𝑡)| ≤  [
𝑅

𝐿
𝑇] |𝑖1(𝑡) − 𝑖0(𝑡)| 
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                                                 |𝑖2(𝑡) − 𝑖1(𝑡)| ≤  𝛽𝜑1 

Doing the same for n=3, 4, … 

    |𝑖3(𝑡) − 𝑖2(𝑡)| ≤  𝛽|𝑖2(𝑡) − 𝑖1(𝑡)| ≤ 𝛽2𝜑1, 

    |𝑖4(𝑡) − 𝑖3(𝑡)| ≤  𝛽|𝑖3(𝑡) − 𝑖2(𝑡)| ≤ 𝛽3𝜑1, 

⋮ 

Then the general solution will be, 

                                         |𝑖𝑛(𝑡) − 𝑖𝑛−1(𝑡)| ≤  𝛽𝑛−1𝜑1 

Since 𝛽 < 1, so the sequence {𝑖𝑛(𝑡)}  will be convergent. 

𝑖(𝑡) =  lim
𝑛→∞

(−
𝑅

𝐿
∫ 𝑖𝑛−1(𝜏)𝑑𝜏 

𝑡

0

) = −
𝑅

𝐿
∫ 𝑖(𝜏)𝑑𝜏 

𝑡

0

 

 

3.2  Numerical Examples 

3.2.1 RL Current Growth 

For the circuit of  Figure 3.2, i(0) = 0, and the 50 Ω resistor represents the resistance of the inductor. 

Compute and sketch i(t) for t > 0. 

 Solution: 

i. We can get the exact solution of (3.1) by applying Laplace transform. 

 

𝑖(𝑡) =  
𝐸

𝑅
(1 − 𝑒−

𝑅
𝐿

𝑡) = 0.126(1 − 𝑒−5𝑡) 

ii. From (3.4) and (3.5) we get 

 𝑖0(𝑡) =  0.1 ∫ 6.3 𝑑𝜏
𝑡

0
,                                                  

                𝑖𝑛(𝑡) =  − 5 ∫ 𝑖𝑛−1(𝜏)𝑑𝜏
𝑡

0
,  𝑛 ≥ 1.  

Figure 3.2 
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          hence,  

𝑖(𝑡) =  ∑ 𝑖𝑛
𝑛=0

∞

(𝑡)  

iii. From (3.7) and (3.8) we get 

𝑖0(𝑡) =  0.1 ∫ 6.3 𝑑𝜏
𝑡

0

, 

𝑖𝑛(𝑡) = 0.1 ∫ 6.3 𝑑𝜏
𝑡

0
−  5 ∫ 𝑖𝑛−1(𝜏)𝑑𝜏

𝑡

0
,  𝑛 ≥ 1.  

 hence, 

𝑖(𝑡) = lim
𝑛→∞

𝑖𝑛(𝑡). 

Figures illustrate a comparison among the exact solution, the ADM, and the PM. These visuals 

demonstrate that as the number of terms n increases, the accuracy of the solution improves, 

ultimately converging to the exact solution. 

 

 

Figure 3.4: ADM and LTM Solutions 
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Table 3.1 shows the absolute relative error (ARE) of ADM and PM solutions. The time comparison between 

them is given in Table 3.2. 

Table 3.1:  ARE of ADM and PM solutions 

𝒕 |
𝒊𝑨𝑫𝑴 − 𝒊𝑬𝒙𝒂𝒄𝒕

𝒊𝑬𝒙𝒂𝒄𝒕
| |

𝒊𝑷𝑴 − 𝒊𝒆𝒙𝒂𝒄𝒕

𝒊𝑬𝒙𝒂𝒄𝒕
| 

0.1 𝟗. 𝟑𝟎𝟐 × 𝟏𝟎−𝟏𝟕 𝟏. 𝟒 × 𝟏𝟎−𝟏𝟔 

0.2 𝟗. 𝟎𝟕 × 𝟏𝟎−𝟏𝟕 𝟖. 𝟕𝟏𝟐 × 𝟏𝟎−𝟏𝟕 

0.3 𝟏. 𝟏𝟔𝟖 × 𝟏𝟎−𝟏𝟔 𝟎 

0.4 𝟒. 𝟑𝟎𝟐 × 𝟏𝟎−𝟏𝟔 𝟐. 𝟓𝟒𝟖 × 𝟏𝟎−𝟏𝟔 

0.5 𝟓. 𝟒𝟕𝟓 × 𝟏𝟎−𝟏𝟕 𝟐. 𝟒 × 𝟏𝟎−𝟏𝟔 

0.6 𝟒. 𝟎𝟒𝟓 × 𝟏𝟎−𝟏𝟔 𝟗. 𝟐𝟕𝟑 × 𝟏𝟎−𝟏𝟔 

0.7 𝟑. 𝟕𝟖𝟗 × 𝟏𝟎−𝟏𝟔 𝟒. 𝟓𝟒𝟐 × 𝟏𝟎−𝟏𝟔 

0.8 𝟐. 𝟑𝟕𝟐 × 𝟏𝟎−𝟏𝟓 0 

0.9 𝟐. 𝟖𝟖𝟔 × 𝟏𝟎−𝟏𝟓 𝟒. 𝟒𝟓𝟓 × 𝟏𝟎−𝟏𝟔 

1 𝟏. 𝟎𝟔𝟔 × 𝟏𝟎−𝟏𝟓 𝟏. 𝟕𝟕𝟒 × 𝟏𝟎−𝟏𝟓 

 

From table 3.1 we can see that the two methods are close to each other, but PM is more accurate. 

Table 3.2: time comparison 

ADM time PM time 

0.14 1.531 

 

Figure 3.5: PM and LTM Solutions 
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From table 3.2 we deduce that the ADM gives results faster than PM. 

3.2.2 RL Circuit with An Initial Current 

For the circuit of Figure 3.5, i(0) = 0.72. Compute and sketch i(t) for t > 0. 

 Solution: 

i. We can get the exact solution of (3.1) by applying the Laplace transform: 

𝑖(𝑡) =  𝐼0𝑒−
𝑅
𝐿

𝑡 = 0.72𝑒−5𝑡 

ii. From (3.4) and (3.5) we get, 

 𝑖0(𝑡) =  0.72,                                                  

                𝑖𝑛(𝑡) =  − 5 ∫ 𝑖𝑛−1(𝜏)𝑑𝜏
𝑡

0
,  𝑛 ≥ 1.  

            hence,  

𝑖(𝑡) =  ∑ 𝑖𝑛
𝑛=0

∞

(𝑡)  

iii. From (3.7) and (3.8) we get, 

𝑖0(𝑡) =  0.72, 

𝑖𝑛(𝑡) = 0.72 +  5 ∫ 𝑖𝑛−1(𝜏)𝑑𝜏
𝑡

0
,  𝑛 ≥ 1.  

hence, 

𝑖(𝑡) = lim
𝑛→∞

𝑖𝑛(𝑡). 

Figures illustrate a comparison among the exact solution, the Adomian Decomposition Method 

(ADM), and the Picard Method (PM). These visuals demonstrate that as the number of terms n 

increases, the accuracy of the solution improves, ultimately converging to the exact solution. 

Figure 5 

Figure 3.5 
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Notice: All calculations and graphical representations in the paper were performed using 

MATHEMATICA software for the examples presented. 

 

 

 

Table 3.3 shows the absolute relative error (ARE) of ADM and PM solutions. The time comparison between 

them is given in Table 3.4. 

Table 3.3:  ARE of ADM and PM solutions 

𝒕 |
𝒊𝑨𝑫𝑴 − 𝒊𝑬𝒙𝒂𝒄𝒕

𝒊𝑬𝒙𝒂𝒄𝒕
| |

𝒊𝑷𝑴 − 𝒊𝒆𝒙𝒂𝒄𝒕

𝒊𝑬𝒙𝒂𝒄𝒕
| 

0.1 𝟔. 𝟓𝟎𝟏 × 𝟏𝟎−𝟏𝟕 𝟏. 𝟐𝟕𝟏 × 𝟏𝟎−𝟏𝟔 

0.2 𝟑. 𝟎𝟖𝟐 × 𝟏𝟎−𝟏𝟔 𝟒. 𝟏𝟗𝟐 × 𝟏𝟎−𝟏𝟔 

0.3 𝟖. 𝟑𝟏𝟖 × 𝟏𝟎−𝟏𝟔 𝟔. 𝟗𝟏𝟏 × 𝟏𝟎−𝟏𝟔 

0.4 𝟑. 𝟐𝟖𝟑 × 𝟏𝟎−𝟏𝟓 𝟎 

0.5 𝟏. 𝟔𝟎𝟖 × 𝟏𝟎−𝟏𝟓 𝟕. 𝟓𝟏𝟒 × 𝟏𝟎−𝟏𝟓 

Figure 3.6: ADM and LTM solutions 

Figure 3.7: PM and LTM Solutions 
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0.6 𝟏. 𝟐𝟖𝟔 × 𝟏𝟎−𝟏𝟒 𝟎 

0.7 𝟐. 𝟗𝟗 × 𝟏𝟎−𝟏𝟒 𝟏. 𝟎𝟐𝟏 × 𝟏𝟎−𝟏𝟒 

0.8 𝟒. 𝟗𝟑𝟗 × 𝟏𝟎−𝟏𝟒 𝟕. 𝟓𝟕𝟕 × 𝟏𝟎−𝟏𝟒 

0.9 𝟏. 𝟔𝟎𝟐 × 𝟏𝟎−𝟏𝟒 𝟒. 𝟏𝟔𝟒 × 𝟏𝟎−𝟏𝟒 

1 𝟐. 𝟎𝟏𝟑 × 𝟏𝟎−𝟏𝟑 𝟐. 𝟐𝟖𝟖 × 𝟏𝟎−𝟏𝟒 

 

From table 3.3 we can see that the two methods are close to each other, but PM is more accurate. 

Table 3.4: time comparison 

ADM time PM time 

0.094 sec. 1.422 sec. 

 

From table 3.4 we deduce that the ADM gives results faster than PM. 

4. Conclusion 

In this study, we compared the Adomian decomposition method and the Picard method for 

solving ordinary differential equations in electric circuits. While both methods are effective, 

ADM is faster, making it preferable for time-sensitive applications. Future research could 

explore hybrid approaches that leverage the strengths of both methods. 
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