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Abstract

This study focuses on the solution of RLC series circuits. We use three methods to solve them:
ADM, PM, and Laplace. The existence and uniqueness of the solution are proved. The
convergence of the ADM and PM solutions are discussed. Then, numerical examples are solved

to compare the results of the three methods.
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1. Introduction

In this paper, we aim to study one of the applications of differential equations, which is electrical
circuits. We use three methods to solve the problem. They are the Adomian decomposition method
(ADM), the Picard method (PM) and the Laplace transform method (LTM). They are widely used
for different applications. The LTM solution is considered as the exact solution. After proving the
convergence of the first two methods, we compare the results of ADM and PM by the LTM

solution, and then we discuss the advantages of each method.
2. RLC Electrical Circuit

The oscillating electrical circuit where the resistance R, inductance L, and capacitance C are
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connected with the voltage source vs. They can be connected in different ways, but here we study
the following series RLC circuit.

(]
Figure 1

In the context of the RLC circuit, the parameters are defined as follows:

Vs: the voltage source measured in volts,

R: the resistance measured in ohms,

L: the inductance measured in hernias,

C: the capacitance measured in farads.

These components are integral to the behavior of the circuit and are used in the formulation of the

following integro-differential equation (IDE) that describes the dynamics of the RLC series circuit:

di(t) _ 1t
L——+ Ri(t) + —f i(t)dt + v.(0) = v(t),
dt CJ,
i(0) = Iy, 1)
where,
di(t) .
L TRk the voltage across the inductor

Ri(t): the voltage acrosse the resistor



1 t
Ef i(t)dt: the voltage across the capacitor
0

vy the initial voltage across the capacitor

3. Methods of Solution
3.1. Adomian decomposition method (ADM)

I.  The solution algorithm

From (1), we have

LE8 = (v — vg) = RI(t) — 1 f, i(D)dx )

By integrating both sides of equation (2), we get
i(t) =1, + %fot(vs —vy)dt — %fot i(t)dt — %fot foti(r)drdr (3)
Decomposing i(t) = Yo—oin(t) and substitute in equation (3), we get the following recursive

relations that represent the ADM algorithm:
t

1
o @ = I+ [ @ -wdr, 4

0

in() = =1 [y ina (DT =12 [} [y inoa (Dddr. (5)
Finally, the ADM solution of (1) is

(o]

(0= ) in(®. ©)
n=0
ii.  Convergence analysis

» Existence and uniqueness of the solution

Define the mapping F: E —» E where E is the Banach space, (C[I],|-]]) is the space of which
consists of all continuous functions defined on the interval I with the norm [|i(t)]|| = Trgglxli(t)l,

VO<t<t<T.



Theorem 1:
The problem (1) has a unique solution whenever 0 < 8 <1 where, f = %[R + %]

Proof:

The mapping F: E — E is defined as,

Fi(t) = I, +%ft(vs — vg)dTt —%f i(t)dt ——J Jl(‘[)d’[d’[
0

Let: i(t),z(t) €EE

R (¢ 1 (¢t g R [t 1 (¢t g
||Fi — Fz|| = max —Zfo i(t)dr —EL fl(r)drdr+fjo z(t)dt +Ef0 fz(r)drdr
0 0

t t ¢k ¢k
= max [%jo i(t)dt —%L z(t)dt ] + [%L ji(r)drdr—%fo JZ(T)deT
0 0

Rt 1 (tf
< max _jo [i(t) — z(7)]dT |+ max Efo J[l(‘[) — z(1)]dtdt
0

tel |L
t
J dt
0

<R li(t t|T+1T2 li(t )l
_Lmaxl() z(t) LCZTrtlngl() z(t)

R
< — i(t) —
=7 TTtlngll(t) z(t)]

t
1 ] t
+Rrr}g1xll(t)—z(t)| fOJdrdr
0

[ T+E7I ”l—Z”

< |R+—|1i -
_L[ +zc]”l d
< plli —z||

Under the condition, 0 < 8 < 1, the mapping F is a contraction. Hence, there exists a unique



solution of the problem (1) and this completes the proof.

» Proof of convergence

Theorem 2:

The series solution (6) of the problem (1) using ADM converges if |i;(t)| <cand0<p <1,
T T

p= L [R * ol

Proof:

Define the sequence {S, } such that S,, = Y-, ix(t) is the sequence of partial sums from the series
solution.

Let S,, and S,, be two arbitrary partial sums with n > m. Now, we are going to prove that {S, }
is a Cauchy sequence in this Banach space.

”Sn - Sm” = ng'glxlsn - Sml = nglx%mﬂ ik(t)l

= max z f i (t)dt +—f jlk(T)deT
k=m+1
¢ b
=nl}glx j z ir (t)dr+— f z i, (t)dtdt
0 k=m+1
R ¢ -1 t n-1
= max Zj Z ix (t)dr+—f f z i (t)dtdt
0 k=m k=m
R (¢ 1 (¢ ]
= max |7 | [Snes = Seslde 4 g [ [ 18000 = Spoalaede
0

t
<max j |Sp_1 — S 1|dr+max f JISn_l—Sm_lldrdr
0
0

R 2
SZT max|Sy—1 — Syl +E7 ";Lgan 1~ Sm-1l
tel
R
< ZT-I_E? 1Sp-1 — Sm-1ll
<
7[5+ 225 1Sams = Sl

< .8”571—1 - m—1”



Let n=m+ 1 then,
1S a1 = Smll < BlISm — St ll < BlIS i1 — Speall < -+ < B™IIS; = Sol
From the triangle inequality we have,
1Sn = Sull < [1Sma1 = Smll + ISmsz = Smaall + -+ 1Sn — Sl
< [B™ A+ B 44 BTTHIISE = Soll
<B™[1+ ﬁ + e BTTHIS, = Soll
< g [ il

Since0 < f < 1,andn > m, then (1 — ™) < 1. Consequently,

152 = Smll < 5 16 O

g™
< 1y maxli (6]

Nevertheless, |i; (t)| < o0 and asm — o, ||S,, — S,,|l = 0 and hence, {S, } is a Cauchy sequence
in this Banach space, so the series Y,o— i, (t) converges, and this statement concludes the proof.

» Error analysis

For the Adomian Decomposition Method (ADM), we can assess the maximum absolute truncation

error of the series solution as outlined in the subsequent theorem

Theorem 3:
The maximum absolute truncation error of the series solution (6) to the problem (1) is estimated
to be

YO = ) i®)

k=0

max < —maxIL1 3]

tel

Proof: From theorem 2 we have,

m
— < — 1
”Sn Sm” =1 _’Brrtlglxlll(t)l

But, S, = X, ix (t) asn — oo, then S, = i(t),so
m

I40) = Sl < 75 maxlis O

Therefore, the maximum absolute truncation error in the interval I is



. _ m . < ﬁm .
max|i(t) — Xizo i (O] < 7—max|iy (¢)]
In addition, this completes the proof.

3.2. Successive approximation method (PM)

i.  Solution algorithm

Applying PM to IDE (3), the solution is
io(t) = Io +7 [ (vs — vo)dt (7)
. . R rt . 1 pt pt.
in(t) = i) — 7 [, i@dr — Efo J, i(®)dzdz. (8)

All the functions i,,(t) are continuous functions, and i, (t) is the sum of successive differences.

in(t) = 16(8) + ) in(8) = in 1 (0
k=1

This means that the sequence i,,(t) convergence is equivalent to the infinite series convergence.

The final PM solution takes the form

i(t) = lim i,(¢).
n-—-oo
ii.  Convergence analysis

We can deduce that if the series Y., ix(t) — ix_1(t) is convergent, then the sequence {i,(t)}
will converge to i(t).

To prove that the sequence {i,,(t)} is convergent, consider the associated series,

oo

PREGEING

k=0
For k=1, we get

i (8) = io(8) = =2 [ io(Ddr —— [ [ ig(r)drdr

Hl(t)——io(t)I::|—-§jgi0(r)dr ——fgjgjgio(r)drdr|
< 21 i@z | + | = 5 [} o ()drdr]
<lig(O)I [ f, dr + = [ [} io(z)drdr]

. R 1 T2
<lig(®OI[FT + ==



[ +E7]’7—‘P1
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Where |iy(t)| < nand ¢, = [ T+i% n.

Now, we will get an estimate for i,,(t) — i,,_1(t), n = 2

() = i () =

—%J‘tln 1(n)dr ——f fln 1(D)drdt + — f in_p(T)dr +—f fln 2(7)dtdr

|in(£) = in-1 ()]

= —gftln 1(r)dr ——f fln 1(D)drdt +— f in-2(0)dt

1t .
+Ef fin_z(r)drd‘r
0
0

Rt R (Y
Zf in—q(D)dt — zf in_o(T)dt | +
0 0

<

%j:f in—1(r)drdr — —f fl" ,(1)dzdt

<[Ffydr + 2 [ drdr lin-y(8) = 12 (0]

L s (0) = s (0]
< .Blln—l(t) - ln—Z(t)l

In the above equation, if we put n=2

<[T+

R
12(8) — 2 (6)] < [ T+E7l HORING]

lip(0) — i, (D] < By
Doing the same for n=3, 4,...
lis(t) — i, ()] < Bli(t) — i1(D] < B¢y,
lia () — i3] < Bliz () — i,(O] < B4,

Then the general solution will be,

|in(6) = i1 (O] < B 1oy

Since B < 1, so the sequence {i,,(t)} will be convergent.



i(t) = 7ll_r)rolo —%Ltln 1(D)dt — —J fln 1(t)dtdt

i(t) = —%f i(t)dt — —f fl(‘[)d‘[d‘[

4. Numerical Examples

For the circuit of Figure 2, i(0) =5A, v(0)= 2.5V and the 0.5 Q resistor represents the resistance

0.50Q
—AMA—

Ct) i(t) % 1 mH

15u,(t) V

/1 100/ 6 mF

Figure 2

of the inductor. Compute and sketch i(t) for t > 0.

Solution

t

t
ldtr — SOOJ

0

i(t) =5+ 12500]

0

t ot
i(t)dr — 60,000[ f i(1) drdt
0 Jo

I.  We can get the exact solution of (1) by applying Laplace transform.
First, we get the DE form of (1)

dzi(t)_l_ Rdl(t)
dt? L dt L

L(t) =0

Then we apply Laplace transform and get the exact solution
i(t) = 1157200t — 110300t
ii.  From (4) and (5) we get,
io(t) = 5+ 12500 [, 1dr,

in(t) = =500 [ in_q(1)dT — 60,000 [} [ iy 4(z) drdT, n>1.
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Hence,
i) = zjig 0

iii.  From (7) and (8) we get,

t

i(t) = 5+ 12500] 1dr,
0

in(t) =5+ 12500 [ 1dr — 500 [, in_1(7) dz — 60,000 [ [\ in_1(7) dzdr, n=1.
Hence,

i(t) = lim i,(t).
n—-oo
Figures illustrate a comparison among the exact solution, the ADM, and the PM. These visuals
demonstrate that as the number of terms n increases, the accuracy of the solution improves,
ultimately converging to the exact solution.

Notice: All calculations and graphical representations in the paper were performed using
MATHEMATICA 5.2 software for the examples presented.
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Figure 3: ADM and LTM solutions
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i(t)
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Figure 4: PM and LTM solutions

Table 1 shows the absolute relative error (ARE) of ADM and PM solutions. The time comparison
between them is given in Table 2.

Table 1: ARE of ADM and PM solutions

¢ iADM - iExact iPM - iexact
iExact iExact
0.005 3.61 x 10716 0
0.01 2.09x 1071* | 2.82x 10715
0.015 1.23x1071% | 1.51x 10713
0.02 9.86 x 10711 | 2.09 x 10713
0.025 1.45 x 1078 1.12x 1078

From Table 1, we can see that the two methods are close to each other, but PM gives solution that

iS more accurate.

Table 2: time comparison

PM time
103.453 sec.

ADM time

58.36 sec.

From Table 2, we deduce that the ADM gives results faster than PM.
5. Conclusion

In this paper, we discussed the RLC series circuit equation, and then we proved the convergence
11



of ADM and PM solutions. We provided an example of the circuit and compared the ADM and

PM by the Laplace solution. In addition, we compared between the ADM and PM, resulting that

the ADM is faster, but the PM is more accurate.
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