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Abstract

In this paper, we apply the Adomian decomposition method (ADM) for solving linear and
nonlinear ordinary differential equations (ODES). The existence and uniqueness of the solution are
proved. The convergence of the series solution and the error analysis are discussed. Some
applications are solved such as relaxation-oscillation equation.
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1 Introduction

Differential equations have many applications in engineering and science, including electrical
networks, fluid flow, control theory, fractals theory, electromagnetic theory, viscoelasticity,
potential theory, chemistry, biology, optical and neural network systems [1]-[11]. In this paper,
Adomian decomposition method (ADM) [12]-[19] is used to solve these type of equations. This
method has many advantages, it is efficiently works with different types of linear and nonlinear
equations in deterministic or stochastic fields and gives an analytic solution for all these types of
equations without linearization or discretization. The convergence of the series solution and the
error analysis are discussed. Some numerical examples and applications (such as relaxation-
oscillation equation) are solved.

2 Problem solving

2.1 The solution algorithm
LD + £)) = XD,

W =0, j=012..n1
(1)
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And ) is the nonlinear term expanded in terms of Adomian polynomials,
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And the linear operator L as defined before in equations (2) and (3). Substitute from (3) and (2)
into (1) we get,

(L+ RAD+D_ Ar = XD,
n=0 (6)
LYY = XD — RAD -, An,

i (7)
Applying L™ {0 both sides of equation (7) we have,

A =LA - LPRAD - “(Z An>,

n=0
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Decompose n=0 and substitute in equation (8), we get the following recursive
relations,
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n = _L_lR n— - L_lAn_ .
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Finally, the solution of (1) is

KD =D yald.



3 Convergence analysis

3.1. Existence and uniqueness of the solution

Define the mapping F.E— E where £ is the Banach space ( -l ), the space of all
IAD || =max D |Z/’:é «9k(1)| <M

continuous functions on !/  with the norm rel
VO0st=<t=<7 M js finite constant and ) satisfy Lipschitz condition with Lipschitz
constants € such as, constants C such as,

1) - £2| < Qy- 4
Theorem 1:

The problem (1) has a unique solution whenever 0 < B <1 \where, B= T"IM+C]

Proof:

The mapping F . E— E s defined as,
ALY = LX)~ L RAY — L (1)
Let XD.AD < E.
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Under the condition 0 <8 <1, tne mapping F is contraction and hence there exists a unique



solution of the problem (1) and this completes the proof. ®

3.2. Proof of convergence

Theorem 2:

The series solution (11) of the problem (1) using ADM converges if Wil <oe ang
0<p<l p=T[M+L].

n
5 Sp = Z,V/(D
Proof: Define the sequence {Sn} such that, 0 is the sequence of partial sums from
2D
the series solution #0 since,

) = Zy,(o) =D A6 S I
<0 0
So,
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Let S» and Sm be two arbitrary partial sums with /7> /7 Now, we are going to prove that
Sn} isa Cauchy sequence in this Banach space.

1Sy — Sml =max |S, — Sm| =max
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Let 7= M+1 then,
1Smit = Smll < Bl Sm— Sma |l < B2 Sma = Sz | < -+ < B7I1S1 = o
From the triangle inequality we have,
150 = Smll < |Smea = Smll + | Smiz = Sa [l + - + | 50 = Spa ||
<[B7+ BT+ BIS - S0
<SP+ B+ BTH]]S - S0

<p7| 55 [

since, 0 <B <1 and 7> 1 then, 1=B"") =1 consequently,

150 = Smll < L 101

1-p
Bm
< max
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but, DA()] < gngas M- then, 157 =Smll = 0 ang hence, Sn¥ s a Cauchy sequence
> yn(d
in this Banach space so, the series 70 converges and this completes the proof. ®

3.3. Error analysis

For ADM, we can estimate the maximum absolute truncated error of the Adomian's series
solution in the following theorem.

Theorem 3: The maximum absolute truncation error of the series solution (11) to the problem
(1) is estimated to be,

mMax
teJ

m—Zy/m‘ < % mex [y (2]
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Proof: From theorem 2 we have,

m
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n m 1—,3 il 1

> o

But, Sn = 0 as 7~ © then, Sn > XD s

Bm
10 = Sull < 1= mex ba (o)

So, the maximum absolute truncation error in the interval / is,
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And this completes the proof. =
4. Numerical Examples

4.1. Application: relaxation-oscillation equation

The Relaxation-Oscillation equation is,

D" +AND = Ky, (>0,
K(0) = 0, k=0,1,...,m-1).
M9(0) ( m-1) (12)
We will solve it by using ADM in two cases when 77=1 and M=2

Case1(/M=1):

In this case this problem is called the relaxation differential equation. If we take A=1
L) = HD, ang A0 =0, the equation (12) will be,

ay _ _
- "D =HD), KO =0,

(13)
where 9 s the unit-step function, and it has the exact solution Ay)=1-¢",
Using ADM we get,

t
w( = [ Ho,
° (14)
t
vty ==[ yra@er,  n=1.
0 (15)

from equations (14) and (15) we have,

_ __F __r o, _ L

hence,



KO =D Vn=Yo+ Vit Vot )t Yut
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A comparison between the exact and ADM solutions is given in figures 1.a-1.c. From these

figures, we see that when we increase the number of the terms /| the solution will be more
accurate, moreover, it gives the exact solution.

Notices:

1) All computations and figures are made using MATHEMATICA software for all the given
examples.

2) Inall figures, the solid curve represents ADM solution, while the other curve for the other
method.
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Fig2.1l.c:AlMand Exact Sol. [n=60]



Case2 ( M=2):.

In this case this problem is called the oscillation differential equation. If we take A =1,

£ = Ky, H0)=0, ang V() =0, tne equation (12) will be,

F;y

—g A= HD, A0 =0, Y(©) =0.

which has the exact solution X9 =1—cos(d)

Using ADM we get,

w0 = [ [ Hodre,

i ==[' [ ke, nz1

from equation (18) we have,

_r ¢ £ £ 70

W= =791 Vo= 355" Y8 = ~70320" ¥* ~ 3628800

hence,

KO =D Vo =Yo+ A+ Vet Vot Vo

n=0

Y G SN R NN R
2 24 720 40320 3628800

~ 1 — cos(d).

A comparison between the exact and ADM solutions is given in figure 2 -

(17

(18)

)

(19)
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Fig2.2:AlMand Exact Sol.. [n=35]

4.1.2. Numerical Example

Example Consider the initial value problem,

Dy= ) +1,
0=0 0<t<l
H0) <t< (20)
Which has the exact solution X9 = @n(d
Applying ADM to the problem (20) we have,
| "1
J/O - 0 '
t
Vo= An@er, n=1.
° (21)

From equation (21) we find that,

yo=z:y1=§ 26 177 627

) 1—5,J/3 = —315,J/4 = 5835

Hence the approximate solution of the problem (20) is given by the truncated series,

4
() =D Vo =Jo+ Ji+Yo+ s+
n=0
=t+£+i+ﬂ+ﬁztan(t).

3 15 315 2835 22)

A comparison between the exact and ADM solutions is given in figure 3. We see from this figure



that ADM gives the exact solution.
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